Autoregressive short-term prediction of turning points using support vector regression

نویسندگان

  • Ran El-Yaniv
  • Alexandra Faynburd
چکیده

This work is concerned with autoregressive prediction of turning points in financial price sequences. Such turning points are critical local extrema points along a series, which mark the start of new swings. Predicting the future time of such turning points or even their early or late identification slightly before or after the fact has useful applications in economics and finance. Building on recently proposed neural network model for turning point prediction, we propose and study a new autoregressive model for predicting turning points of small swings. Our method relies on a known turning point indicator, a Fourier enriched representation of price histories, and support vector regression. We empirically examine the performance of the proposed method over a long history of the Dow Jones Industrial average. Our study shows that the proposed method is superior to the previous neural network model, in terms of trading performance of a simple trading application and also exhibits a quantifiable advantage over the buy-and-hold benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed....

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.0127  شماره 

صفحات  -

تاریخ انتشار 2012